23.11.2020 

На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. при этом площадь трапеции mbcn в k раз больше площади трапеции amnd . найдите длину mn если вс= а и ад = b

. 5

Пошаговый ответ

01.10.2020, проверен экспертом
Разблокировать ответ
 Другое решение , проведем диагональ  На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40  . На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 высота    трапеций На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40
Пусть точка На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 пересечение диагонали с  На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40  .  Из подобия треугольников  На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40   и    На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 
 На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40     На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 
На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 

 
 откуда        На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 
  Так как площади трапеций 
 На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40  
  то в сумме 
 На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40 
 подставляя 
 На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40
  
Разблокировать ответ
Дана трапеция АВСD, ВС=а и АD=b, а < b, продолжим боковые стороны до пересечения в точке К. Получим 3 подобных треугольника КВС, КМN, KAD ( по 3 углам). Примем MN=x. Так как полощади подобных фигур относятся как квадраты их линейных размеров имеем: S(КВС):S(KMN):S(KAD)=a²:x²:b²
S(BCMN)=S(KMN)-S(KBC)
S(AMND)=S(KAD)-S(KMN)
Значит
S(BCMN)/S(AMND)=(x²-a²)/(b²-x²)=k
Отсюда найдем х:
х²-a²=kb²-kx²
x²+kx²=a²+kb²
x²(1+k)=a²+kb²
x²=(a²+kb²)/(1+k)
На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40На боковых сторонах ав и сд трапеции авсд взяты точки м и n так что отрезок mn параллелен основаниям. - вопрос №2809793 от  23.11.2020 06:40

Другие вопросы по предмету

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

1. У 6-угольника, вписанного в окружность, сторона a = R.

Если периметр 6-угольника P = 6, то сторона a = R = 1.

Сторона правильного треугольника, вписанного в ту же окружность

b = R√3 = √3

2. Периметр правильного треугольника P1 = 60, значит, сторона a = 20.

a = R√3 = 20; R = 20/√3 = 20√3/3

Сторона квадрата, вписанного в ту же окружность

b = R√2 = 20√3/3*√2 = 20√6/3

Периметр квадрата P2 = 4b = 80√6/3

3. Сектор в 60° - это 1/6 круга. Площадь круга

S(кр) = pi*R^2 = pi*12^2 = 144pi

S(сек) = S(кр)/6 = 144pi/6 = 24pi

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

Прямоугольник АВСД - диагональное сечение цилиндра. АВ = СД - образующая, ВС = АД - диаметр окружности оснований.

Из прям. тр-ка АСД:

АД = АС*sin60 = (48*кор3)/2 = 24кор3.

Радиус основания: АД/2 = 12 кор3.

Площадь основания:  S = ПR^2 = 432П

ответ: 432*П см^2.

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

Угол ABC - х градусов

угол BCA - х+14 градусов

угол BAD - 110 градусов

 

Найти угол BAC

 

По теореме внешнего угла треугольника 

ABC+BCA=BAD

x+x+14=110

2x=96

x=48

ABC=48

BCA=62

По теореме о сумме внутрених углов теуголника

АВС+BCA+BAC=180

48+62+BAC=180

BAC=70

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

Так как СМ - биссектриса, то угол ЕСМ=DCM=60/2=30 градусов. Рассмотрим треугольник ЕСМ и применим теорему синусов:

sin30/3√2=sin45/CM, откуда

СМ=sin45*3√2/sin30=(1/√2*3√2)/1/2=6см

ответ: СМ=6см

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

ответ: 864√3 см³

Объяснение:

 Так как основание призмы ромб с острым углом 60°, меньшая диагональ делит его на два равносторонних треугольника с равными углами при их основании ( меньшей диагонали). Поэтому высота призмы равна этой диагонали как сторона квадратного сечения, т.е. h=12 см.  Объём призмы находят произведением площади основания на высоту ромба.

V=S•h.  

Площадь параллелограмма равна произведению соседних сторон на синус угла между ними. Ромб - параллелограмм с равными сторонами. S=a²•sin60°=12²•√3/2=72√3 см² ⇒

V=72√3•12=864√3 см³


Основанием прямой призмы является ромб со стороной 12 см и углом 60°. меньшее из диагональных сечени
Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

AC - проекция MC на (ABC), так как MA перпендикулярно AC. AC перпендикулярно BC, тогда по теореме о трех перпендикулярах MC также перпендикулярно BC.

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

Опустим  перпендикуляр из на плоскость АВС. Он в правильном треугольнике при равноудалённой S  в центр вписанной и описанной окружности О. Проведём апофему SД из точки S на сторону АС до пересечения в точке Д. По формуле r=корень из3*а/6=корень из3*6/6=корень из 3(радиус вписанной окружности= ДО). Тогда высота SО=корень из(SДквадрат-ДОквадрат)=корень из(39-3)=6.  По формуле R=корень из3*а/3=корень из3*6/3=2корня из 3(радиус описанной окружности). R=АО.  Тангенс искомого угла SАД=tgX=SО/АО=6/ 2 корня из3=корень из 3. Следовательно угол=60.

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

площадь боковой поверхности правильной шестиугольной призмы равна

Sб=6*a*h

a- сторона шестиугольника, лежащего в совновании

h=5 см - высота призмы

 

a=Sб/(6*h)

a=120/(6*5)=4 см

 

Площадь основания (как правильного шестиугольника равна)

S=3/2*корень(3)a^2

 

S=3/2*корень(3) *4^2=24*корень(3) кв. см

 

обьем призмы равен произведению площади основания на высоту призмы

V=S*h

V=24*корень(3) * 5=120*корень(3) куб. см

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

катеты (10 + r) и (3 + r),r - радиус вписаной окружности.

по теореме Пифагора :))) 

(10 + r)^2 + (3 + r)^2 = (10 + 3)^2; r = 2

(можно решить это элементарное квадратное уравнение, а можно и заметить, что 12^2 + 5^2 = 13^2, отсюда можно считать, что решение получено подбором :)))

поэтому стороны треугольника 5, 12 и 13.

(И где же тут больший катет? Точно не 13, это же гипотенуза :(( трудный вопрос :(()

ответ 12

Геометрия Геометрия
Пошаговый ответ
P Ответ дал Студент

км=кс*cos50

мс=кс*sin50

S=км*мс=кс^2*cos50*sin50=кс^2*sin100/2=81* 0.985/2=39.8925