1) всего номеров 10^4 (по 10 вариантов на каждую цифру), подходят 10*9*8*7 (первую цифру можно выбрать из 10 вариантов, вторую уже из 9 и т.д.)
вероятность = 10*9*8*7 / 10^4 = 9*8*7 / 1000 = 0.504
2) вероятность вытащить туза из полной колоды равна 4/36 = 1/9. А вытащить независимо туза из двух колод (1/9)^2 = 1/81
3) логика подсказывает, что нет разницы, когда тащить билет (можно думать, что мы не знаем, что кто-то уже тянул билет. Какая тогда разница?)
Докажем это.
Если тянуть билет первым, то вероятность вытянуть то, что надо, равна m/n.
Если тянуть вторым (формула полной вероятности):
P(вытянуть хороший) = P(вытянуть хороший|первый вытянул хороший) * P(первый вытянул хороший) + P(вытянуть хороший|первый вытянул плохой) * P(первый вытянул плохой) = (m - 1)/(n - 1) * m/n + m/(n - 1) * (n - m)/n = 1/n(n - 1) * (m(m - 1) + m(n - m)) = (mn - m) / n(n - 1) = m/n
Как и следовало ожидать, вероятности равны.
___ P.S. Можно поставить другую задачу, когда у вас есть выбор: пойти тянуть билет или послать товарища и узнать, какой билет он вытянул. Оптимальная стратегия в этом случае не так проста.