Отрезки ав и сd пересикаються в точке о,которая является серединой каждого из них. а)докажите,что угол аос=углу воd б)найдите угол оас,если угол оdв=20 градусов,угол аос=115 градусов
Если острый угол прямоугольной трапеции равен 45 градусов, то ее меньшая боковая сторона (высота трапеции) равна разности оснований, то есть 10 - 6 = 4 см.
Пусть точки М и N - основания высот, проведённых к сторонам АС и АВ соответственно. Тогда окружность пройдёт через эти точки. Т.к. она касается стороны АВ в точке N, то диаметр окружности принадлежит высоте СN, т.к. `CN_|_AB` (как-то плохо доказано, как правильно?). Пусть окружность пересекает CN в точке D, тогда ND - диаметр; угол DMN - прямой, т.к. опирается на диаметр; треугольник DMN - прямоугольный. Треугольники AMN и ABC подобны (Так и не понял почему. Где-то читал, что они должны быть подобны, а вот по какому признаку?. Мне кажется, что тут дело в равенстве углов, но как доказать? Один угол общий BAC=MAN, а вот другой?). Т.к. треугольник АВС - равнобедренный с основанием АС, то высота ВМ - медиана, т. М - середина АС, АМ=12/2=6. Из подобия следует, что `(MN)/(BC)=(AM)/(AB)=>MN=(BC*AM)/(AB)=(10*6)/10=6`. Треугольник MND - прямоугольный. А вот теперь идёт утверждение, которое я никак не могу доказать, но которое показалось мне верным и привело меня к верному ответу. Утверждение следующее: Треугольники NMD и BMC подобны (опять мне кажется, что дело в подобиях по двум углам, и у того, и у другого есть прямой угол, т.е. углы NMD и BMC равны, но вот как доказать равенство других углов?). Из подобия следует: `(BM)/(NM)=(BC)/(NC)=>NC=(BC*NM)/(BM)=(10*6)/8=15/2` - это мы нашли диаметр. Радиус тогда равен `R=(NC)/2=15/4` - верный ответ.
задача плоская - всё происходит в плоскости, перпендикулярной грани угла и содержащей т.А. Рисуем угол 45 градусов, где то внутри угла на расстоянии 10 - точку А, и из неё опускаем перпендикуляры на стороны угла. Пусть длина одного х, тогда другого х*3*√2.
(Для любителей тупых решений скажу сразу, х является решением тригонометрического уравнения
pi/4 = arccos(x/10) + arccos(x*3*√2/10);
Однако все гораздо приятнее)
Продолжим отрезок длинны х до пересячения со второй стороной угла. Получим прямоугольный равнобедренный треугольник, у которого катет равен х+х*3*√2*√2 = 7*х, и в нем отрезок, соединяющий вершину одного острого угла с точкой на противоположном катете, который отсекает на нем отрезок х. Это отрезок по условию равен 10.
отсюда
х^2 + (7*x)^2 = 10^2; х = √2; второе расстояние равно 6, конечно.